Understanding Your Furnace or Boiler

The Department of Energy has a good post up on how to understand the energy efficiency of your boiler or furnace:

Furnaces and Boilers

Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts; boilers heat water, providing either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed via baseboard radiators or radiant floor systems, or can heat air via a coil. Steam boilers operate at a higher temperature than hot water boilers, and are inherently less efficient, but high-efficiency versions of all types of furnaces and boilers are currently available.

Understanding the Efficiency Rating of Furnaces and Boilers

A central furnace or boiler's efficiency is measured by annual fuel utilization efficiency (AFUE). The Federal Trade Commission requires new furnaces or boilers to display their AFUE so consumers can compare heating efficiencies of various models. AFUE is a measure of how efficient the appliance is in the energy in its fuel over the course of a typical year.

Specifically, AFUE is the ratio of heat output of the furnace or boiler compared to the total energy consumed by a furnace or boiler. An AFUE of 90% means that 90% of the energy in the fuel becomes heat for the home and the other 10% escapes up the chimney and elsewhere. AFUE doesn't include the heat losses of the duct system or piping, which can be as much as 35% of the energy for output of the furnace when ducts are located in the attic.

An all-electric furnace or boiler has no flue loss through a chimney. The AFUE rating for an all-electric furnace or boiler is between 95% and 100%. The lower values are for units installed outdoors because they have greater jacket heat loss. However, despite their high efficiency, the higher cost of electricity in most parts of the country makes all-electric furnaces or boilers an uneconomic choice. If you are interested in electric heating, consider installing a heat pump system.

The minimum allowed AFUE rating for a non-condensing fossil-fueled, warm-air furnace is 78%; the minimum rating for a fossil-fueled boiler is 80%; and the minimum rating for a gas-fueled steam boiler is 75%. A condensing furnace or boiler condenses the water vapor produced in the combustion process and uses the heat from this condensation. The AFUE rating for a condensing unit can be much higher (by more than 10 percentage points) than a non-condensing furnace. Although condensing units cost more than non-condensing units, the condensing unit can save you money in fuel costs over the 15- to 20-year life of the unit, and is a particularly wise investment in cold climates.

You can identify and compare a system's efficiency by not only its AFUE but also by its equipment features, listed below.

  • Old, low-efficiency heating systems:
  • Natural draft that creates a flow of combustion gases
  • Continuous pilot light
  • Heavy heat exchanger
  • 68%–72% AFUE
  • Mid-efficiency heating systems:
  • Exhaust fan controls the flow of combustion air and combustion gases more precisely
  • Electronic ignition (no pilot light)
  • Compact size and lighter weight to reduce cycling losses
  • Small-diameter flue pipe
  • 80%–83% AFUE
  • High-efficiency heating systems:
  • Condensing flue gases in a second heat exchanger for extra efficiency
  • Sealed combustion
  • 90%–97% AFUE

Retrofitting Your Furnace or Boiler

Furnaces and boilers can be retrofitted to increase their efficiency. These upgrades improve the safety and efficiency of otherwise sound, older systems. The costs of retrofits should be carefully weighed against the cost of a new boiler or furnace, especially if replacement is likely within a few years or if you wish to switch to a different system for other reasons, such as adding air conditioning (see the section on selecting and replacing heating and cooling systems). If you choose to replace your gas heating system, you'll have the opportunity to install equipment that incorporates the most energy-efficient heating technologies available.

Since retrofits are fuel-specific, see the following sections for retrofit information:

  • Gas-Fired Furnaces and Boilers (includes units fired with natural gas and propane)
  • Oil-Fired Furnaces and Boilers

Other retrofitting options that can improve a system's energy efficiency include installing programmable thermostats, upgrading ductwork in forced-air systems, and adding zone control for hot-water systems, an option discussed in the Heat Distribution Systems section.

Replacing Your Furnace or Boiler

Although older furnace and boiler systems had efficiencies in the range of 56%–70%, modern conventional heating systems can achieve efficiencies as high as 97%, converting nearly all the fuel to useful heat for your home. Energy efficiency upgrades and a new high-efficiency heating system can often cut your fuel bills and your furnace's pollution output in half. Upgrading your furnace or boiler from 56% to 90% efficiency in an average cold-climate house will save 1.5 tons of carbon dioxide emissions each year if you heat with gas, or 2.5 tons if you heat with oil.

If your furnace or boiler is old, worn out, inefficient, or significantly oversized, the simplest solution is to replace it with a modern high-efficiency model. Old coal burners that were switched over to oil or gas are prime candidates for replacement, as well as gas furnaces with pilot lights rather than electronic ignitions. Newer systems may be more efficient but are still likely to be oversized, and can often be modified to lower their operating capacity.

Before buying a new furnace or boiler or modifying your existing unit, first make every effort to improve the energy efficiency of your home, then have a heating contractor size your furnace. Energy-efficiency improvements will save money on a new furnace, because you will need a smaller furnace. A properly sized furnace will also operate most efficiently. You'll also want to look for a dependable unit and compare the warranties of each furnace or boiler under consideration.

When shopping for high-efficiency furnaces and boilers, look for the ENERGY STAR® label. If you live in a cold climate, it usually makes sense to invest in the highest-efficiency system. In milder climates with lower annual heating costs, the extra investment required to go from 80% to 90%-95% efficiency may be hard to justify.

You can estimate the annual savings from heating system replacements by using Table 1. The table assumes that both furnaces have the same heat output. However, most older systems are oversized, and will be particularly oversized if you significantly improve the energy efficiency of your home. Because of this additional benefit, your actual savings in upgrading to a new system could be much higher than indicated in the table.

Specify a sealed combustion furnace or boiler, which will bring outside air directly into the burner and exhaust flue gases (combustion products) directly to the outside, without the need for a draft hood or damper. Furnaces and boilers that are not sealed-combustion units draw heated air into the unit for combustion and then send that air up the chimney, wasting the energy that was used to heat the air. Sealed-combustion units avoid that problem and also pose no risk of introducing dangerous combustion gases into your house. In furnaces that are not sealed-combustion units, backdrafting of combustion gases can be a big problem.

High-efficiency sealed-combustion units generally produce an acidic exhaust gas that is not suitable for old, unlined chimneys, so the exhaust gas should either be vented through a new duct or the chimney should be lined to accommodate the acidic gas (see the section on maintaining proper ventilation, below).

For more information head on over to their blog, they have charts and graphs and much more.